存储活动的数字化场景表达:在需求方提出什么时间需要多少货物,然后供方进行采购或者生产,在既定的时间内将货物交付到需求方手中。在这个过程中,结合判定采购或生产的周期与交付周期是否能够匹配,如果不匹配则需要提前准备货物库存。那么这些库存需要一个存储的场地,可以是仓库、堆场等任何一个可以进行存储的空间内,同时,这个过程是持续发生的。这个过程为了达到最经济的状态,便需要对其进行模拟运算,构建最合适的机制和最优的资源配置。
模型表达:在存储中有两个模型非常重要,一个是安全库存,另一个是订货量,我们抽象来看,前者决定了存多少,后者决定的需要订多少。整个供应链系统可以看成是由这两个模型拉动,才有了其他模型需求的产生。首先我们用一个标准的安全库存计算公式来看其中表达的逻辑。这里面有两个关键的变量,一个是提前期,另一个是需求量。从物流角度看,提前期L是对时间的限定,而需求量d是对数量的限定,而数量的单位可以转换为单位体积,因此是对空间的限定。标准差是提前期和需求量的偏差,可以看作是描述供应链系统均衡性的一个变量。关于均衡性的判定,通过标准差,可以进一步构建为变异系数C.V,因为是对一个货物需求量的偏差,不同货物之间难以进行对比,而通过调整为变异系数后,可以对不同货物间进行关联。因此,我们可以看到在这个表达式中其实已经对供应链系统中的时间、空间和均衡几个重要的维度做了关联,输出的是空间变量SS。那么由这个表达式可以进一步延伸出一个关于存储空间占用的无穷个逻辑关系。再看经济订货批量,经济订货批量中有几个重要的描述:R表示需求速度,t表示存储时间,C表示订购费用和存储费用,P表示生产速度。这几个变量中包含了对采购和仓储的成本约束,需求和生产率的约束,然后寻找到最合适的订货量,将效率、成本和时间与量构建了一个函数关系。将安全库存与订货量结合来看,安全库存提供了一个触发的机制,而经济订货批量构建了一个要货量的机制,这个两个机制中同时又对时间和空间进行了约束,并且可以反映出系统的均衡状态,通过均衡状态可以反映出系统中的存储策略所消耗的成本,进而可以通过均衡性进行系统性调节,当然,也可以通过对于资源的限定进行局部调节。以上所描述的是一种基本存储策略的形态,即:在安全库存拉动时,不允许缺货、生产需要时间环境中的基本模型结构。还有更多策略形态存在,也带来了存储论模型的各种变化,如对缺货的判定、供应时间的判定、需求量连续性的判定、定期订货还是定量订货的判定等。但从物流场景本身来说,存储活动中的关键输入是需求与到货提前期的量和偏差,再加上对生产(采购)效率与需求速度以及采购与存储成本之间的函数关系,找到最优的存储策略。2.排队模型模拟节点活动的过程与节点作业能力反馈供应链物流系统中,原料仓库和成品仓库都主要从事仓储作业的活动,只是不同类型实现不同的功能。首先原料仓储和成品仓储服务了不同的对象,前者服务于生产后者服务于市场。在仓储的功能分类中,有的是流通加工型,有的是存储型,也有的是中转型等,不同功能仓储活动有较大区别。但总的来说,仓储强调两个方面的能力:一个是存储能力,另外一个是出入库的作业效率。不同的仓库中无非是对这两方面的需求不同而已。
仓储活动的数字化场景表达:根据订单的时间序列,每天产生需要进入的货物订单需求。随着入库货物和出库订单的下达,分配仓储中的资源对其进行处理。入库的货物给予分配场地(货位),由仓储人员和设备进行装卸和搬运,出库的货物由仓储人员和设备将其从当前位置中取出直至装车发运。整个过程在一个有限的三维空间设施中完成,强调以最少的资源投入和最快作业效率,以完成每天仓库中所接收的两种订单类型。对于仓储内部的活动我们采用排队模型来对其进行模拟。其订单货物为队列,人、设施、设备为资源,作业方式为服务机制。
模型表达:首先我们用排队论模型的语言来表达仓储活动,排队论中有一般形式的描述:X/Y/Z/A/B/C,其中,X表示顾客(订单货物)相继到达时间间隔分布;Y表示服务时间(仓储人员与设备的作业效率)的分布;Z表示并联服务台(同时作业的人员和设备的组合)的个数;A表示系统的容量(仓库容量),即可容纳的最多顾客(货物)数;B表示顾客源的数目(订单货物总数);C表示服务规则(订单优先级)。由此可见,这个模型机制中包含了仓储作业场景中需要去模拟的各种要素,如仓储活动需要的资源、仓库能存放的库容、每天有多少订单需要处理、资源的处理效率等,都包含在了模型中进行函数关联。我们再看具体模型的输出表达:一是等待时间和逗留时间。如果车辆在园区内装卸,没有及时的装卸,那么存在等待的时间,装卸的时间和等待时间加总是逗留时间。等待的时间越长对于园区面积的资源消耗越大,而装卸时间又取决于卸货的速度与调度的能力,因此时间变量也与作业能力有关。仓库内对货物的作业也同理。二是资源的忙期和闲期。如果在人员和设备的投入中,用最少的投入实现高负荷的运转,那么对于仓储的经济性是比较高的表现,但如果人员和设备一段时间内处于满负荷,一段时间内处于闲置,这种状态显然经济性不够高。通过模型的模拟也可以输出资源的利用情况,另外还可以通过模型中输出的数据来观测仓储作业机制的作业能力强度,以便于选取一些生产力更强的自动化或者智能化设备。例如模型中构建了平均服务率的变量,再结合资源并行的数量和订单货物下达的时间间隔,进一步构成仓储系统服务强度的变量。我们来看基本的排队模型:其中几个关键变量:ρ表示服务强度,s表示资源并行的数量,L表示等待作业的订单货物数量,W表示等待时间,λ表示订单货物到达的时间间隔,表示服务能力(平均服务率),Z表示最优状态下的资源数和服务能力。从这个模型中我们可以看到下列几种相应的仓储策略:一是如果订单货物或者车辆到达的随机性强并且分布不均,那么仓储系统的资源调度和服务率难以得到保障,而通过计划调节队列数的概率有利于达到更高的仓储资源服务率,也相当于调整其队列分布的概率;二是服务能力可以通过订单发生的概率和客户交付需求进一步模拟出最佳的取值区间,以判断仓储作业中是否需要增加人员或者引入生产力更高的自动化和智能化辅助设备。对于这个变量来说,还可以成为另外一个仿真模型的输出,如模拟自动化设备的分拣能力、搬运能力等,将其“封装”后与进行对接。3.线性规划模型模拟网络活动机制与网络效率反馈在采购物流和销售物流中,主要是对货物从始发地到目的地中关于运输周期、车辆资源与配载,仓库节点布局运输与配送策略等方面的数字化模拟。采购物流中是供应商到工厂端的运输网络结构,以产品原料为作业对象,而销售物流是从成品仓库到客户端的运输网络结构,以成品为作业对象。虽然都是网络化的结构,但是其中的作业模式和策略还是有很大差别。
采购物流运输网络的数字化场景表达:在采购(供应)物流网络中,上万量级的原料从上千量级的供应商处始发,按照工厂的生产速度需求进行供货,运输的目的地可能是中间仓库和线边仓库以及直供生产线的几种不同的方式中的一种。近距离的供应商根据作业机制的构建,配送方式可能是A点直接到B点,也可能循环取货的方式进行配送。整个运输网络需要在控制缺货风险的情况下寻求总成本最优,其场景是在全球GIS的坐标系统中完成。
模型表达:在采购物流网络中的仿真模型是以线性规划为基础,把对工厂所需要交付的时间作为约束条件,把多阶段的运输成本和中间仓和线边仓的建设与运作成本作为目标,再灵活根据企业实际的运作场景构建约束环境。其中还可以增加不同的供应模式,如JIT、MilkRun等模式,将其作为成本变量的函数表达式,这样的可以在模型引入更多可选择的策略。在模型中我们可以看到其中x,y,z分别表示不同运输阶段中个每种物料的运输量,也是模型中的决策变量,需要通过模拟构建每种物料的流向与最优运输量。其中不同的上标标的C是代表不同的成本,如运输成本,仓储作业成本。这样就通过数学模型构建了以总成本最小作为目标的判定函数。如前所述,对于成本项仍然构建为其与作业模式的函数模型,通过不同的JIT、MilkRun等模式,以及不同的物料准入不同的模式,然后返回到成本变量中,这样对模型来说就更加能够指导实践。在销售物流网络中,模型框架与与采购物流网络相似,但是描述场景内容有很大的区别。在仓库布局上,可能存在多级库存,也就是从工厂生产完成并运输到客户端,可能会经过NDC-CDC-RDC这样的结构,当然,通常在制造型的供应链体系的销售物流比流通型的体系相对简单,我们先按照制造型供应链网络进行说明。
制造型企业销售物流运输网络的数字化场景表达:制造企业上千种产品从全国多工厂中生产完成,然后通过工厂端的成品库进行一定周期的存储,然后根据各地配送中心的库存需求将产品运输到全国乃至全球的各个配送中心,这是第一阶段的运输环节,这个环节中配送中心的需求量相对较大,整车集中运输比较多。各个配送中心根据区域内的客户订单进行配送,这是第二阶段的配送环节,这个过程客户的订单量要小于第一阶段,因此需要考虑到车辆配载与配送路径的问题。在整个过程中重点需要